
Andrew Lovett, Eyal Sagi, Dedre Gentner, & Kenneth Forbus 

 

 

MODELING PERCEPTUAL SIMILARITY AS ANALOGY 

RESOLVES THE PARADOX OF DIFFERENCE DETECTION 
 

Andrew Lovett
1
 

andrew-lovett@northwestern.edu  

Eyal Sagi
2
  

ermon@northwestern.edu  

 Qualitative Reasoning Group1 

Dedre Gentner
2 

gentner@northwestern.edu 

Kenneth Forbus
1
 

forbus@northwestern.edu 

Psychology Department2 

Northwestern University, 2133 Sheridan Road 

Evanston, IL 60208 USA  

 

ABSTRACT 

 

There is a paradoxical dissociation be-

tween recognizing that two stimuli are differ-

ent and recognizing how they are different. We 

show that this dissociation can be captured by 

modeling perceptual similarity as a species of 

analogical processes. Using SME to model 

comparison, we show that the dissociation 

arises naturally from different stages in the 

analogical mapping process. Rather than rely-

ing on hand-coded input representations, our 

model uses an automatic, incremental encod-

ing process to generate representations from 

the same stimuli as given to human partici-

pants.  

 

INTRODUCTION 

 
Although analogy was traditionally asso-

ciated chiefly with creative discovery and 

problem-solving, there is increasing evidence 

that the same cognitive processes that humans 

utilize in abstract analogies may also be at 

work in concrete similarity comparisons 

(Markman & Gentner, 1996; Medin, Gold-

stone, & Gentner, 1993). The idea that a single 

process may underlie both literal similarity and 

analogy has garnered theoretical as well as 

empirical support (Gentner, 1983; Gentner & 

Markman, 1995; Goldstone & Medin, 1994).  

One arena in which this approach has 

been particularly fruitful is the study of how 

people process differences. For example, 

Markman and Gentner (1996) found that when 

participants judged the similarity of pairs of 

images, they were particularly sensitive to the 

alignable differences between the images: that 

is, to differences that correspond within the 

common structure (such as different objects in 

the same relational role). In contrast, they were 

less sensitive to nonalignable differences: dif-

ferences that are not linked to the common 

structure or are linked in different ways. This 

finding is predicted by Gentner’s (1983) struc-

ture-mapping theory of analogy, in which re-

presentations are compared by aligning their 

structure, thereby highlighting both the com-

mon structure and differences connected to it.  

A further prediction is that because high-

ly alignable pairs (with considerable common 

structure) are easier to compare than less 

alignable pairs, differences between them will 

be more easily noticed. This leads to the 

somewhat surprising prediction that people 

should be better able to identify differences 

between pairs of similar concepts than between 

pairs of dissimilar concepts—a prediction 

borne out in studies by Markman and Gentner, 

(1993) (see also Gentner & Markman, 1994;  

Gentner & Gunn, 2001). This finding also 

holds for perceptual images: People asked to 

list differences between pairs of images listed 

more differences for highly similar than for 

dissimilar images, despite the fact that the dis-

similar images clearly had more potential dif-

ferences between them (Markman & Gentner, 

1996). The key principle here is that alignable 

differences are naturally salient. Therefore, 

when pairs are easily aligned (as with similar 

pairs), their differences ―leap out‖. 
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This finding that it is easier to say how 

two things are different for highly similar pairs 

seems at odds with a large body of work on the 

same-different task showing that people are 

faster to notice that stimuli are different for 

dissimilar pairs than for similar pairs (Farrell, 

1985; Posner & Mitchell, 1967; Tversky, 

1969).  We suggest that the structure-mapping 

process offers a resolution of this seeming pa-

radox (Markman & Gentner, 2005; Gentner & 

Sagi, 2006; Lovett et al., 2007). 

Analogical comparison is modeled by the 

Structure-Mapping Engine (SME) (Falkhen-

hainer, Forbus, & Gentner, 1989) as a multis-

tep local-to-global process. It begins by find-

ing local matches between identical elements 

(attributes and relations that exist in both re-

presentations). These local matches are coa-

lesced into structurally consistent clusters 

(kernels), which are then merged to form a 

consistent global mapping. At this point fur-

ther inferences can be drawn and alignable 

differences become salient. 

 Naming a specific difference between 

stimuli requires a full global mapping, and 

therefore depends on the alignability of the 

stimuli. However, some comparison tasks can 

be accomplished without the full process. Spe-

cifically, if two items are highly dissimilar, 

recognizing that they are different can often be 

done in the first (local matches) stage of 

processing. For example, if there aren’t enough 

local matches to support an identity match, 

then a quick ―different‖ response can be made 

without continuing the alignment process. 

In previous work, we found evidence for 

the predicted dissociation using the same mate-

rials in both tasks (Gentner & Sagi, 2006). 

Given pairs of plants or pairs of heraldic 

shields, people were faster to say ―different‖ 

for dissimilar pairs (e.g., the column pairs in 

Figure 1, A&C and B&D); but faster to name a 

difference for similar pairs (e.g., the row pairs, 

A&B and C&D). Finally, also as predicted, 

people were faster overall on the same-

different task, which can sometimes be ac-

complished in the first stage of the process, 

than on the name-a-difference task. A follow-

up simulation (Lovett, Sagi & Gentner, 2007) 

demonstrated how this dissociation can be ex-

plained based on structure-mapping1. SME 

was given simplified versions of the materials, 

automatically encoded using CogSketch (For-

bus et al., 2008), a sketch understanding sys-

tem (described later). SME found fewer local 

matches for dissimilar than for similar pairs—

consistent with the  finding of faster ―differ-

ent‖ RTs for dissimilar pairs—but computed 

stronger global matches for similar than for 

dissimilar pairs—consistent with the finding of 

faster name-a difference RTs for similar pairs. 

 
The Gentner and Sagi (2006) study and 

the Lovett et al. (2007) simulation demonstrat-

ed the predicted reversal: Same-different res-

ponses are faster for low-similarity pairs and 

name-a-different responses are faster for high-

similarity pairs. However, structure-mapping 

predicts an additional dissociation between the 

tasks. In the same-different task, participants’ 

reaction times should be strongly affected by 

the similarity of the objects in the images be-

ing compared. If the objects are dissimilar, 

there will be few initial local matches, allow-

ing a fast ―different‖ RT (because participants 

                                                 
1 The materials simulated were heraldic shields 

(Gentner & Sagi, 2006, Experiment 1). 

 

Figure 1: Sample stimuli from Gentner & Sagi, 

2006. Images in the same row are high-sim pairs; 

images in the same column are low-sim pairs. 

A B 

C D 
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can reject the possibility that the images are 

the same based on only the first stage of SME). 

However, object similarity should play a much 

weaker role in the name-a-difference task, be-

cause this task requires computing a complete 

global mapping. Thus the alignability of the 

relational structure of the images should be the 

major determinant of reaction time  

This paper examines these predictions by 

independently varying object similarity and 

relational similarity. Before presenting the 

psychological study, we describe a computa-

tional model called PEC: Parallel Encoding 

and Comparison. PEC makes use of an auto-

matic encoding system for perceptual images 

(CogSketch) that removes the need for hand-

coded representations. We show that our mod-

el can be run on the same stimuli as were given 

to the human participants, and that it generates 

measures that correlate with human perfor-

mance. In addition to testing the predictions of 

structure-mapping, our simulation permits us 

to test specific models of perceptual encoding 

like that embedded in PEC (Lovett et al., in 

press). 

 

COMPUTATIONAL MODEL 

 

In the PEC model, perceptual comparison 

is seen as an interaction between two separate, 

but interleaved, processes operating in parallel 

(Lovett et al., in press). The encoding process 

incrementally builds up representations of the 

two stimuli, beginning with low-level features 

like object shapes, and concluding with high-

level relational structure. The comparison 

process (SME) computes an analogical map-

ping between the two representations, first 

finding local matches2 and, over time, building 

up a globally coherent structural mapping. 

When these processes run to completion, the 

model can both determine whether the stimuli 

                                                 
2 As always in SME, the local match stage is not 

inherently bottom-up; matches are made at any level 

in parallel. However, in the case of incremental 

encoding, object matches may be discovered before 

relational matches simply because of the order in 

which these are encoded.  

are the same or different and name a specific 

difference between them. However, for very 

dissimilar stimuli, the model can quickly rec-

ognize that they are different based on finding 

a small number of local matches between the 

low-level features in the stimuli. 

We begin by more fully describing the 

Structure-Mapping Engine, our model of com-

parison. We then describe our model of incre-

mental encoding, which uses CogSketch to 

automatically generate representations. Final-

ly, we show how these processes interact and 

how they can be used to generate different 

predictions for the two tasks. 

 

Comparison: 

The Structure-Mapping Engine 

 
The Structure-Mapping Engine (SME) 

(Falkenhainer, Forbus, & Gentner, 1989; For-

bus & Oblinger, 1990) is a computational 

model of analogical comparison. It is based on 

Gentner’s (1983) structure-mapping theory, 

according to which people compare two repre-

sentations by aligning their common structure 

to compute a structurally consistent mapping. 

The alignment process is guided by structural 

consistency and by the systematicity principle: 

that people implicitly prefer to maximize the 

size and depth of the aligned structure.   

SME takes as input two cases: a base and 

a target. Each case is a structural description 

made up of entities, attributes of entities, and 

relations. Lower-order relations hold between 

entities; higher-order relations hold between 

lower-order relations. SME computes map-

pings in three steps. 

1: SME computes all possible local matches 

between statements in the base and target. Lo-

cal matches must be either (a) identical attrib-

utes or relations; or (b) functions that are cor-

responding arguments of matched statements.  

2: The local matches are coalesced into struc-

turally consistent clusters (kernels)—partial 

mappings between the base and target. 

3: Kernels that are consistent with each other--

i.e., that do not violate structural consistency—

are merged to form global mappings. A global 
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mapping is a maximally (or nearly maximally) 

large consistent mapping between the base and 

target. 

SME computes one to three global map-

pings between a base and target, heuristically 

seeking to find mappings that maximize sys-

tematicity. Each mapping consists of a set of 

correspondences between elements and rela-

tions in the base and target; a structural 

evaluation score—a numerical similarity 

measure based on the size and systematicity of 

the mapping; and a list of candidate infer-

ences–predicates connected to the common 

structure in the base but not initially present in 

the target. Importantly, reverse candidate in-

ferences can also be computed. An alignable 

difference is detected when an inference and a 

reverse inference clash. 

 

Encoding: CogSketch 

 
We use CogSketch (Forbus et al., 2008) 

to automatically construct representations of 

visual stimuli. CogSketch is an open-domain, 

general-purpose sketch understanding system 

that constructs structural representations from 

human-drawn sketches and other line draw-

ings. Unlike previous sketch understanding 

systems, which focus on recognizing the ob-

jects in the sketch, CogSketch focuses on cap-

turing and interpreting the spatial relations 

among (and within) the entities, including per-

ceptual and spatial organization.   

By using CogSketch to construct the spa-

tial representation given to SME, we can give 

the system the same PowerPoint materials 

given to human participants. This allows us to 

escape the well-known problem of hand-

coding—that the model’s input representations 

may be (perhaps unknowingly) tailored to fit 

the model and the predictions. In addition, as 

we show in the next section, by explicitly 

modelling the encoding process, we can ex-

plore specific hypotheses concerning the time 

course of encoding. 

Users create a sketch in CogSketch by 

drawing a set of objects, called glyphs.  Given 

a set of glyphs, CogSketch automatically com-

putes a number of spatial relations between 

them. These include topological relations—

such as whether two glyphs intersect or one 

lies within another—and positional relations, 

such as right-of.   For compactness, positional 

relations are only computed between glyphs 

that CogSketch believes to be adjacent. 

In addition to computing spatial relations 

between glyphs, CogSketch can also compare 

the shapes of glyphs. It does this by building 

up a structural representation of the edges of 

the glyphs and comparing them. CogSketch 

can thus recognize when two glyphs are the 

same shape. Typically, this information is used 

to create shape attributes, which are applied to 

every glyph of the same shape. For example, 

while CogSketch has no pre-existing shape 

knowledge, and thus no way of recognizing 

triangles, it can recognize that all the triangle 

glyphs in a sketch are the same shape and cre-

ate a new attribute that is applied to them. 

Thus when CogSketch compares two sketches 

using SME, it will recognize that they contain 

glyphs with the same shapes.  

We are also experimenting with an exten-

sion to CogSketch that identifies groups  based 

on the Gestalt grouping principles of good 

continuation and proximity, as described be-

low. 

 

Incremental encoding 

There is evidence from visual same-

different tasks that participants do not encode 

all of a visual scene at one time. Rather, it ap-

pears that object attributes are encoded before 

relations (Sloutsky & Yarlas, in preparation). 

Some configural properties may also be en-

coded very early (Love, Rouder, and 

Wisniewski, 1999). For example, in Figure 2 

from our study, we hypothesize that partici-

pants are likely to notice the row of three ob-

jects on the top before they recognize the indi-

vidual objects that make up the image. 

Based on this evidence, we have built a 

rough model of encoding in which perceptual 

information is made available incrementally, in 

three steps: (1) configural attributes are en-

coded; (2) object attributes are encoded; (3) 

relations are encoded (both relations between 
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objects and higher-order relations between 

groups of objects)3. Configural attributes are 

encoded by CogSketch for groups of objects 

that form a line (e.g., the top row in Figure 2) 

or pairs of objects that are adjacent (e.g., the 

bottom row). 

 

Interaction between  

Encoding and Comparison 

 

A further assumption in our PEC model 

of perceptual comparison is what we could 

term the ―eager comparison‖ assumption: that 

the comparison process can begin its work 

before the encoding process is complete. That 

is, SME can use the partial results of the en-

coding process to begin matching. This means 

that at first, SME’s initial local match process 

will be operating chiefly over object attributes 

and local configural attributes (such as the top 

row in Figure 2). This assumption of simulta-

neous encoding and matching processes is re-

lated to the interactive process proposed by 

Hofstadter and colleagues (French, 1995; Hof-

stadter & Mitchell, 1994). 

In the PEC model, encoding and com-

parison interact as follows: 

1: Configural attributes for the two stim-

uli are given to SME, which finds local 

matches between them. If the number of local 

                                                 
3 The evidence is inconclusive as to whether 

configural or object attributes should be encoded 

first . Further, we suspect that higher-order relations 

may be encoded after first-order relations. For 

simplicity, the current PEC model encodes 

configural attributes, object attributes, and relations 

in that order. 

matches is much lower than the number of 

elements in the base and target representations, 

the pair is judged as different. 

2: Objects and their attributes are added 

to the representations, and SME looks for addi-

tional local matches in the updated representa-

tions. Again, if the number of local matches is 

relatively small, the pair is judged as different. 

3: Relations are added to the stimulus 

representations. SME looks for additional local 

matches in the updated representations and 

then proceeds through its other stages, comput-

ing a global mapping between the representa-

tions. The candidate inferences of the global 

mapping are used to identify alignable differ-

ences. Only at this stage can the name-a-

difference task be done4. 

This model makes three predictions about 

human performance on the two tasks and how 

they are affected by object and relational simi-

larity. First, overall performance should be 

faster on the same-different task than on the 

name-a-difference task. This is because par-

ticipants can often recognize that stimuli are 

different based only on the number of local 

matches in the first stage of SME, but all three 

stages of SME are required to compute a 

global mapping and identify a specific differ-

ence.  Second, in the same-different task, par-

ticipants should be fast to say ―different‖ if 

either object similarity or relational similarity 

is low. This is because either of these will re-

sult in a small number of local matches in the 

first stage of SME. Third, performance on the 

name-a-difference task should be faster for 

high relational similarity pairs. Object similar-

ity should play a less significant role. This is 

because naming a difference depends on com-

puting a structural mapping between the stim-

uli. Thus, overall, relational similarity should 

affect both tasks (though in opposite direc-

tions), while object similarity should only play 

                                                 
4 The name-a-difference task can of course be done 

without aligning the pairs, especially if there is a 

very salient difference (e.g., elephant vs. no ele-

phant). However, all else being equal, people find it 

easier to notice alignable differences (Gentner & 

Markman, 1994). 

 

Figure 2. Shape groupings may be 

noticed before individual shapes. 
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a major role in the same-different task. 

 

EXPERIMENT 

 
We evaluated our model’s predictions in 

a psychological experiment in which we inde-

pendently varied the object and relational simi-

larity of the stimuli. The same stimuli were 

given to two sets of participants, with one set 

performing the same-different task and the 

other performing the name-a-difference task. 

In this way, we were able to measure the influ-

ence that object and relational similarity have 

on each of the similarity tasks. 

 

Participants and Materials 

 
Fifty-three undergraduate students at 

Northwestern University participated, 20 in the 

same-different condition and 33 in the name-a-

difference condition.  
The materials were 60 images, each 

composed of 5 distinct objects (silhouettes) 

surrounded by a frame. Forty of the images (20 

pairs) were designed such that in both images 

the spatial organization of the objects was 

highly similar (e.g., the rows in Figure 3). In 

half of these pairs (―high object similarity 

pairs‖), 4 of the 5 objects were shared between 

the two images, while in the other half (―low 

object similarity pairs‖), only 1 of the 5 objects 

was shared. The 20 pairs were then combined 

into groups of two pairs (e.g., Figure 3, A-D, 

G-J), such that the two pairs differed in their 

spatial organization but included the same ob-

jects. The remaining 20 images were used to 

create 20 pairs of identical images (―same‖ 

pairs).  

Each participant saw 5 pairs from each of 

the experimental conditions (high relational 

sim/high object sim, high relational sim/low 

object sim, low relational sim/high object sim, 

and low relational sim/low object sim). In ad-

dition, participants in the same-different condi-

tion were also given the 20 ―same‖ pairs. Fi-

nally, 10 pairs (five identical, five non-

identical) consisting of arrangements of geo-

metrical forms were used for training.  

 

Procedure 

 
The experiment was presented by com-

puter. After completing a training phase, par-

ticipants received the experimental pairs in two 

blocks of equal length. Each pair was preceded 

by a half-second fixation period during which 

a crosshair appeared at the center of the screen. 

The pair remained on the screen for 3000 ms.  

In the same-different condition, partici-

pants judged whether the pair was identical or 

non-identical by pressing the left- or right- 

control key (counterbalanced). In the name-a-

difference condition, participants typed in a 

difference between the two images. When the 

Low object similarity pairs 

A. 

 

B. 

 
C. 

 

D. 

 
High object similarity pairs 

E. 

 

F. 

 
G. 

 

H. 

 

Figure 3. Sample stimuli. Within each set, im-

ages in the same row represent high relational 

similarity pairs; images in the same column 

represent low relational similarity pairs. 

 



Andrew Lovett, Eyal Sagi, Dedre Gentner, & Kenneth Forbus 

 

participant responded (by making a same-

different judgment or by starting to type a dif-

ference) or the 3000ms elapsed, the presented 

pair disappeared from the screen. In the name-

a-difference condition, participants were then 

presented with a screen where they typed (or 

continued typing) the difference they had iden-

tified. For both tasks, the time between the 

onset of presentation of the pair and the re-

sponse was recorded. 

 

Results 

 
Only correct ―different‖ responses were 

used in the same-different analysis. This ex-

cluded approximately 9% of the ―different‖ 

responses. Trials in which participants viewed 

different image pairs but responded ―same‖ 

where removed (approximately 17% of the 

responses to different image pairs). The me-

dian response for each condition was then 

computed for each participant and each item. 

These medians provided the data points for the 

statistical analysis; their condition means are 

given in Table 1. 

As predicted, same-different judgments 

were much faster than difference-identification 

(which took more than twice as long). Also as 

predicted, the two tasks showed different re-

sponse patterns. In the same-different task, 

participants were faster to say ―different‖ for 

pairs with low object similarity than pairs with 

high object similarity. ―Different‖ responses 

were also faster for pairs with a substantially 

different spatial organization (low relational 

similarity) than for pairs that had a highly 

similar spatial organization. In contrast, partic-

ipants in the name-a-difference condition were 

slower to identify a difference between low 

relational similarity pairs than between high 

relational similarity pairs. Their performance 

showed no effect of object similarity.  

Repeated-measures ANOVA of Object 

Similarity x Relational Similarity for each task 

bore out these patterns. There was a significant 

effect of relational similarity in both tasks 

(though in opposite directions). (Same-

Different: F(1, 19) = 36.3, MSe = .7, p < .01; 

Name-a-Difference: F(1, 32) = 7.2, MSe = 4.3, 

p < .05). However, object similarity only af-

fected performance in the same-different task 

(Same-Different: F(1, 19) = 48.1, MSe = .7, p < 

.01; Name-a-Difference: F(1, 32) = .118, MSe 

= 4.3, n.s.). Likewise, the two variables 

showed a statistically significant interaction 

only when participants were performing the 

same-different task, but not for name-a-

difference (Same-Different: F(1, 19) = 20.8, 

MSe = .7, p < .01; Name-a-Difference: F(1, 32) 

= 2.5, MSe = 4.3, n.s.). 

Item ANOVAs for the two tasks showed 

similar patterns, revealing a main effect of 

relational similarity on both tasks (Same-

Different: F(1, 9) = 32.8, MSe = .2, p < .01; 

Name-a-Difference: F(1, 9) =20.3, MSe = .3, p 

< .01) but a main effect of object similarity 

only for participants in the same-different task 

(Same-Different: F(1, 19) = 16.7, MSe = .2, p < 

.01; Name-a-Difference: F(1, 32) = .11, MSe = 

.3, n.s.). As in the subject analysis, the interac-

tion was significant only for participants in the 

same-different task (Same-Different: F(1, 19) 

= 13.7, MSe = .2, p < .01; Name-a-Difference: 

F(1, 32) = .63, MSe = .3, n.s.). 

Finally, a preliminary analysis of the dif-

ferences identified by participants suggests 

that participants were more likely to produce 

alignable differences when comparing images 

with high relational similarity than when com-

paring images with low relational similarity. 

For example, when comparing images E & F 

from Figure 3, 12 out of 17 participants (70%) 

produced alignable differences that contrasted 

the star in one image with the plus sign in the 

 High Relational Similarity Low Relational Similarity 

 Object Similarity High Low High Low 

Same-Different   1.67 (.39) 1.24 (.25) 1.15 (.16) 1.11 (.13) 

Name-a-Diff  3.93 (.50) 4.06 (.71) 4.27 (.84) 4.19 (.70) 

Table 1. Mean response times by task and type of pair. Standard deviations are given in parenthesis. 
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other (e.g. ―Right had star instead of a plus 

sign‖). In contrast, when comparing images E 

& G, only 4 out of 14 participants (29%) pro-

duced alignable differences, and none of these 

identified the star in one image and the plus 

sign in the other. This pattern is similar to that 

observed by Markman and Gentner (1996) in 

which participants were more likely to identify 

differences that were alignable when two im-

ages were easier to align. We are currently 

conducting a more complete analysis of the 

identified differences. 

 

Discussion 

 
The results from the study matched our 

predictions. Participants were faster to recog-

nize that the pairs were different than to name 

a particular difference. In the same-different 

task, participants were faster to recognize both 

low relational and low object similarity pairs 

as different, consistent with both local con-

figural attributes and object attributes being 

encoded and compared quickly. In contrast, in 

the name-a-difference task, participants’ per-

formance depended only on relational similar-

ity, consistent with participants needing to 

perform a full structural mapping between the 

stimuli.  

 

SIMULATION 

 

We evaluated the PEC computational 

model by running it directly on the stimuli 

used with human participants. The questions of 

interest are (a) Would the model generate simi-

larity measures that correlate with human reac-

tion times on the tasks? And (b) Would the 

model show the same dissociations between 

the tasks as those found in the human data? 

 

Procedure 

 
We ran the PEC model on the same 40 

pairings as were used in the psychological 

study: 20 high and 20 low relational similarity 

pairings, half high object similarity and half 

low object similarity. 

The images were imported directly into 

CogSketch from PowerPoint. When Power-

Point images are imported, CogSketch auto-

matically constructs a glyph for each Power-

Point shape5.  

In evaluating our model, we looked at 

three measures generated by SME for each 

pairing. All measures were normalized based 

on the overall size of the two representations: 

Local-config-matches: The number of lo-

cal matches found by SME between represen-

tations in which only configural attributes have 

been encoded.  

Local-object-matches: The number of lo-

cal matches found by SME between represen-

tations in which only object attributes have 

been encoded.  

Mapping-score: The structural evaluation 

score for global mappings computed by SME 

between the complete representations.  

Our predictions for these measures were:  

(1) For the same-different task, the local-

config-matches and local-object-matches 

measures should correlate with human per-

formance, reflecting the claim that either a low 

number of configural matches or a low number 

of object matches should allow people to 

quickly determine that the images are different. 

(2) For the name-a-difference task, SME’s 

mapping-score should correlate with human 

performance, since structure-mapping predicts 

that stimuli that share more structure can be 

aligned more easily. However, object-matches 

should not correlate with performance. 

 

Results 

 
We consider each of the predictions in 

                                                 
5 Of the 10 object shapes (sillhouettes) used in the 

psychological experiment, two were made up of 

multiple shapes in PowerPoint. These were 

simplified in PowerPoint so that CogSketch would 

build only one glyph for each of them.  In addition, 

of the 40 images used, two were slightly touched up 

in PowerPoint because a shape was pasting into 

CogSketch badly. Other than these changes, the 

stimuli given to CogSketch were identical to the 

stimuli displayed to human participants. 
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turn. First, both local-config-matches and lo-

cal-object-matches correlate with same-

different performance (local-config-matches: 

r=.64, p<.01; local-object-matches: r=.54, 

p<.01). This positive correlation fits with the 

pattern that humans require more time to say 

―different‖ for more similar pairs (both at the 

object level and at the relational level). 

Second, mapping-score correlates with 

name-a-difference performance (r=-.47, 

p<.01). However, local-object-matches does 

not correlate with name-a-difference (r=-.25, 

n.s.), producing our expected dissociation. 

This fits with the pattern that noticing a spe-

cific difference requires aligning the pair. 

 
Discussion 

 
As the results show, the PEC model is 

able to generate measures that correlate with 

human performance on both similarity tasks. 

Furthermore, our model’s measure of object 

similarity shows the expected dissociation be-

tween the tasks: it correlates with performance 

on the same-different task, in which object 

similarity matters, but not on the name-a-

difference task, in which object similarity does 

not. 

 

RELATED WORK 

 
Several other researchers have used struc-

tural comparison to model human performance 

on visual similarity tasks, including the same-

different task (Goldstone & Medin, 1994) and 

similarity rating tasks (Larkey & Markman, 

2005; Taylor & Hummel, 2007). However, to 

our knowledge none of these models have 

been evaluated on the name-a-difference task. 

 

CONCLUSIONS & FUTURE WORK 

 
Structure mapping explains the reversal 

between the same-different and name-a-

different tasks, wherein it is easier to see that 

dissimilar stimuli are different, but it is easier 

to say how similar stimuli are different. It also 

explains why different types of similarity play 

distinct roles in each task. In the same-

different task, both object similarity and rela-

tional similarity affect how quickly people can 

recognize that they are different. Both the con-

figural information and the attributes of objects 

are encoded and compared quickly. If there are 

relatively few local matches in the first stage 

of comparison—insufficient for an identify 

match—then the pair can be immediately clas-

sified as different. 

In contrast, in the name-a-difference task, 

the relational similarity of the pair plays a ma-

jor role, while the attributes of objects are 

much less important. Images that share the 

same relational structure are much easier to 

align via structure-mapping. 

One remaining question is whether our 

model can correctly predict the specific differ-

ences identified by participants in the name-a-

difference task. As discussed earlier, we are 

currently analyzing these differences.  We plan 

to test whether the differences stated by par-

ticipants match the alignable differences com-

puted by SME in our simulation. 
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